Exercise 37

Prove that $\lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}$ if $a>0$.

$$
\left[\text { Hint: Use }|\sqrt{x}-\sqrt{a}|=\frac{|x-a|}{\sqrt{x}+\sqrt{a}} \cdot\right]
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } 0<|x-a|<\delta \quad \text { then } \quad|\sqrt{x}-\sqrt{a}|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-a|$.

$$
\begin{gathered}
|\sqrt{x}-\sqrt{a}|<\varepsilon \\
\frac{|x-a|}{\sqrt{x}+\sqrt{a}}<\varepsilon \\
\left(\frac{1}{\sqrt{x}+\sqrt{a}}\right)|x-a|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=a$, a positive constant C can be chosen so that $1 /(\sqrt{x}+\sqrt{a})<C$.

$$
\begin{gathered}
C|x-a|<\varepsilon \\
|x-a|<\frac{\varepsilon}{C}
\end{gathered}
$$

To determine C, suppose that x is within a distance b from a.

$$
\begin{gathered}
|x-b|<a \\
-a<x-b<a \\
b-a<x<b+a \\
\sqrt{b-a}<\sqrt{x}<\sqrt{b+a} \\
\sqrt{b-a}+\sqrt{a}<\sqrt{x}+\sqrt{a}<\sqrt{b+a}+\sqrt{a} \\
\frac{1}{\sqrt{b-a}+\sqrt{a}}>\frac{1}{\sqrt{x}+\sqrt{a}}>\frac{1}{\sqrt{b+a}+\sqrt{a}}
\end{gathered}
$$

The constant C is then $1 /(\sqrt{b-a}+\sqrt{a})$, which means $\varepsilon / C=(\sqrt{b-a}+\sqrt{a}) \varepsilon$.

Choose δ to be whichever is smaller between a and $(\sqrt{b-a}+\sqrt{a}) \varepsilon: \delta=\min \{a,(\sqrt{b-a}+\sqrt{a}) \varepsilon\}$. Now, assuming that $|x-a|<\delta$,

$$
\begin{aligned}
&|\sqrt{x}-\sqrt{a}|=\frac{|x-a|}{\sqrt{x}+\sqrt{a}} \\
&=\left(\frac{1}{\sqrt{x}+\sqrt{a}}\right)|x-a| \\
&<C \delta \\
&=\left(\frac{1}{\sqrt{b-a}+\sqrt{a}}\right)[(\sqrt{b-a}+\sqrt{a}) \varepsilon] \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}
$$

if $a>0$.

